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A Dynamical Theory of Brownian Motion 
for the Rayleigh Gas 
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A dynamical theory of the Brownian motion is worked out for the Rayleigh gas 
and open problems of this theory are surveyed. 
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1. I N T R O D U C T I O N  

Recent progress (1'I4'17'18) has again raised hopes of understand the 
dynamical theory of Brownian motion for simplified models at least. In 
fact, Ref. 18 formulates such a theory for the Rayleigh gas, i.e., for the case 
when the Brownian particle interacts with an ideal gas (cf. Ref. 16). 
Moreover, mathematical results were also obtained supporting the theory. 

The aim of the present paper is to explain the main ideas of the 
aforementioned paper in order to understand which open problems of the 
theory seem realistic and, roughly speaking, what kind of difficulties should 
be overcome in their solution. 

To prepare the exposition of the theory (presented in Section 4), we 
give a mathematical formulation of the model in Section 2 and survey 
some previous results in Section 3. The main components of the sketchy 
proof outlined in Section 5 are explained in Sections 6 (the Markovian 
approximation) and 7 (the coupling). Finally, Section 8 surveys the most 
interesting open problems of the theory for both the one- and multi- 
dimensional cases (apart from this last point, we restrict ourselves to the 
1D case). 
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2. F O R M U L A T I O N  OF THE M O D E L  

A one-dimensional system of point particles consists of a tagged par- 
ticle of mass M (the Brownian particle) interacting with an infinite ideal 
gas of particles of mass 1 (light particles). The dynamics of the system is 
governed by the laws of classical mechanics, assuming uniform motion plus 
elastic collisions between the Brownian particle and the light ones and no 
interaction among the light particles. 

The collision rules are the following: 

M - 1  2 2M M - 1  
V + -  V- v-  v + = - V -  - - v -  (2.1) 

- M + I  + M~--i- ' M + I  M + I  

o r  

2 2M 
A V =  V + - V -  = - ( V - - v - ) ;  A v = v  + - v -  - ( V  - v  ) 

M + I  M + I  

where V + and v + are the post- (pre-) collision velocities of the colliding 
Brownian resp. light particle. The most convenient approach is to describe 
our system as seen from the Brownian particle (the so-called 
"Mfinchhausen picture"). In this picture the phase space is 

X = [ R x ( 2 =  {Z= (V, co): V ~ ,  co= (qi, vi)i~1~s } 

where I is a countably infinite index set,/2 is the set of locally finite coun- 
table point systems in R x A, V is the velocity of the Brownian particle, and 
(qi, v~)~x are the coordinates (relative to the position of the Brownian par- 
ticle) and the velocities of the light particles. We say that co is the environ- 
ment seen by the Brownian particle./2 is a Polish space endowed with the 
natural a-algebra ~o generated by counting functions on compact sets. The 
~-algebra on X is Y = ~ x Yo, ~ being the Borel algebra on R. The system 
is distributed according to the Gibbs measure 

iiM(d( V, eJ) ) = dgM( V) . v(d(~) 

with v the Poisson measure on (f2, ~ )  with intensity dx  dFl(v) ,  and 

dFM(V)  = (M/Zz~) I/z exp(-MV2/2)  d V  ( M >  0) 

Denote by S y the dynamics of the system. The following two facts are 
assumed to be known: 

(a) For each M there exists a set ~M c 3Z of/~M-measure 1 on which 
the maps S~ M are well defined for any t~ ~, and S M , =  SMoS M. (The 
equilibrium dynamics exists with probability 1.) 
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(b) The group of transformations S f f : 3 i M ~ 3 1 M  preserves the 
measure #M. The random variables to be introduced below are defined on 
different probabili ty spaces, depending on M. 

We shall use the notations 

V(Z) = V and co()0 = co iff Z =  (V, co)E3; 

v ~ ( z )  = v ( S T z ) ,  z ~ x M 

Q f ( z )  = M v;  ( z )  ds, z e X. ~ 

Throughout  this paper  W} ~ will denote a Wiener process of variance 
a z with W~0 ~ = 0, and for brevity we let W, = W} z). 

The diffusion process ~/, satisfying the stochastic differential equation 

dqt = -Ttl~ dt + D 1/2 dW~ 

is called an Ornstein-Uhlenbeck (velocity) process. If qo is distributed 
according to the Gaussian law with mean 0 and variance (27) -1 D, then r/, 
is a stationary Gauss -Markov  process. 

The integral process 

fo 3, = tl ~ ds 

is called the Ornstein-Uhlenbeck position process. We shall use these 
processes with the following choice of parameters: 

y = (4/m)(2/7c) 1/2, D = (8 /m2) (2 /~ )  ~/2 

and we will use the notations q},-/ and ~I m) for them (m is a positive 
constant). It is worth mentioning that if 7 ~ 0% D ~ ov in such a way 
that D7 -2 ---~dzE [~+, then the Ornstein-Uhlenbeck position process ~, 
converges in distribution to a Wiener process W (~) (see Ref. 11). Thus, 

~I m) ~ ml -~ as m ~ 0 (2.2) 

with ~r 2 = (~z/8) 1/2. 

3. S U R V E Y  OF S O M E  R E S U L T S  

Our final aim is to give a complete asymptotic description of the 
random processes 

Q~(A)/A1/2 as A ~ oo 
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Observe that the space-time scaling is the usual diffusion one, which is 
used, for example, to obtain a Wiener limiting process for random walks. 
M(A) expresses the dependence of the mass ratio of the Brownian particle 
versus the light ones on the parameter A figuring in the space-time scaling. 

Throughout this paper f (A)~ g(A) will have the precise meaning 
f(A ) = o(g(A)). 

Several cases have already been clarified, but the picture is still far 
from complete. Here we list the most important results following a logical 
order rather than a chronological one. 

A. For M(A) - 1, that is, the Brownian particle is identical with the 
light ones, Harris (y) and Spitzer (15) proved that 

QI.IA1/2~ W(<~), e i a=  (2/zc) 1/2 

Throughout this paper, " ~ "  stands for weak convergence on C[0, oo) (or 
on D[0, oo)), the space of continuous functions (or right continuous ones 
without a second-order discontinuity) on [0, oo). 

B. For arbitrary fixed mass M(A)=M, Sinai and Soloveychik/14) 
and the present authors (17) showed that 

Computer results (1z'13) suggest the following picture: for every M 

cr2= 1 lim ~_{Q~,~2 

exists and by (3.1), of course, a~<crM~<& The dependence of cr M on M is 
illustrated in Fig. 1. 

. . . . . . . . . . .  ~ = . 7 9 7 = /  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  c : . :  . . . .  6-~- = . a Z #  7 

4 N 

Fig. 1. Computer results for the dependence of the limiting variance on the mass, 



Brownian Motion for the Rayleigh Gas 685 

C. From the proofs of Ref. 17 it is easy to see that, in (2.3), the upper 
bound holds for an arbitrary scaling functional M(A),  while the lower 
bound holds whenever M ( A ) =  o(A). 

D. For  M ( A ) = m . A ,  me(O, c~), Holley (8) proved that 

AI/ZV~.A ~ ~](m); Q,j.A/Am ~ ~(m) 

Important Remark. The results B and D can be linked by observing 
that Ecf. (2.2)] 

~(m) ~ W(O) as m --+ O 

4. THE T H E O R Y  

On the basis of the aforementioned results, we expect the following 
complete asymptotic picture. 

1. Case M(A)  --> 0: 

2. Case M ( A ) = M :  

QM(A)/A 1/2 ~ W(~) 

Q~./A ~/2 ~ T M, g ~ ffM ~ 

where T M, M >  0, are random processes with stationary increments and 
with asymptotic variance a~ .  

We know that T I =  W ~, while simulations support that aM--)_a as 
M --+ c~ and aM --* a as M ---) 0 (the result for M -  1 was proved in Refs. 7 
and 15, while the bounds on the variances were given in Refs. 14 and 17). 

3. Case I ~ M ( A ) < A :  

Q~.(a)/A !./2 ~ W(_O-) 

4. Case M(A)  = mA: 

where ~(') is introduced in Section 2. This convergence was proved in 
Ref. 8. For  rn ---) 0, (2.2) holds. For  m --+ ~ ,  ~(m) ~ 0. 

5. Case M ( A ) ~  A: 

Q~.(A)/A 1/2 =~ 0 (trivial) 

822/47/5-6-6 
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Of course, this case is not trivial if we allow spatial rescalings different 
from A 1/2. Indeed, by an application of a theorem of Kurtz (essentially by 
the same method as that used in Ref. 8), we find the correct asymptotics 

A 1/2 
v~(A)_ 1 {[M(A)]m vM(A)}I/2 ~_~..~tA 

[M(A)] 1/2 

where [M(A)] 1/2 V M(A) has a standard Gaussian distribution and ~A 
converges in distribution to a Wiener process of variance 4(2/~) ~/2. (If 
d > 1, a similar statement holds with a limiting variance depending on the 
dimension. ) 

One further step in completing the picture outlined above is the 
following. 

Theorem 1. IfAI/2+~<M(A)~A ( e > 0 ) , t h e n  

Q~.(A)/A 1/2 ~ W(,,I 

5. S K E T C H  OF P R O O F  OF T H E O R E M  1 

The first--and in a sense principal--difficulty in the dynamics of the 
Brownian particle is the non-Markovian nature of its motion. Indeed, light 
particles between their first and last collisions with the Brownian one carry 
information on past collisions in a complicated way. Nonetheless, it is a 
natural idea to consider a Markov process whose evolution mimics the 
physical process; this Markov process, of course, disregards recollisions 
that could spoil its Markovian nature. This Markov version can help both 
on an intuitive level, to give a feeling for what the mechanical process is 
like, and on a technical level, if we can construct a good coupling between 
the mechanical and the Markov processes. To our knowledge, this idea was 
first used in a rigorous argument by Holley (8) (cf. case D, Section 3) and 
our proof is also a realization of this strategy. 

Let us first construct a family of Markov processes Vf ,  M > 0, closely 
related to the mechanical velocity processes Vf.  In words, the p M are 
defined as follows: we imagine that the environment is recreated after each 
collision corresponding to the time-invariant distribution v. Thus, the 
Markovian velocity process ~'~ is a pure jump process on ~ with jump 
rates 

Rate ( M--1 m ~  ) 1 ~2/21V-vldv V~M+--------f V+ v = ~ e  
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In the actual coordinates the jump rates are 

RM(x, y) dy 

- ~ )  exp - y x Ix-yldy 

leading to the formal generator 

(SMO)(x) 
2 2 

- (2~z~77 t l  dy ( exP-2 )  lY-Xl[~(M-lx+-M--~y)-~(x)]\-~-~ 

_ 1 ( M 2  1)2 {exp I(M2---~lv-M----~I 

x D ( y ) -  ~(x)] (5.1) 

It is easily seen that, for ~b and ~, belonging to a sufficiently large class of 
functions 

f dFar ~b(x)(CM~)(x)= f dFM(x)(GMO)(x) t~(x) 

Thus, the Markov processes Vff conditioned to the initial distributions 
dF~(x) are stationary and reversible. (We shall see soon that they are 
ergodic, too.) 

Now the program consists of two parts: 

(i) A study of the induced position processes 

(ii) Construction of a good coupling for Q~ and Q, a4, i.e., a 
realization of Q~ and OM on the same probability space that satisfies f 

1 
(Q~(a)_ O~(a)) ~ 0 as A + m (5.2) 

A 1/2 

6. T H E  M A R K O V I A N  P I C T U R E  

For the approximating Markov process our main result is the 
following. 
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(Fixed masses). For any fixed M~ (0, ao) 

O_~./A 1/2 ==:> W(#M) 

8 2 ) ( 1  + 1/M)~/2 _a 2 

lim 82  =g2 
m ~ c o  

(ii) (Sublinearly increasing masses). If 1 ~ M ( A ) ~  A, then 

O~. (4)/A 1/2 ~ W(O-) 

In fact, our methods give the following complete asymptotic charac- 
terization of the induced position processes ~)~ (the reader is encouraged 
to compare it with the analogous picture formulated for Q~ in the 
preceding section). 

1. Case M ( A ) ~ O :  

2. Case M ( A ) =  M: 

Q~.(A)/AI/2 is not tight 

O~4.(AI/A i/2 =:> W(ff.,,,4) 

with 8 2 ~ M  1/2 f o r M - ~ 0 a n d f f  2 ~ g 2 a s M ~ o o .  

3. Case 1 ~ M ( A ) ~ A :  

O~.(A)/A 1/2 ~ W(Zl 

4. Case M(A)  = mA: 

5. Case M ( A ) ~  A: 

O~(A~/A 1/2 ~ 0 

Cases 1-3 follow from Theorem 2; Case 4 is proved in Ref. 8; Case 5 is 
trivial. 

It is instructive to compare the pictures for the mechanical versus the 
Markovian processes (Table I). 
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Table I 

A -I /2Q~(A)=,  A - , / 2 ~ . I A )  

d = !  

Expected Prove& Proved ~ 

M(  A ) ,4 1 W ~ ?? Explodes 

M ( A  ) ~ M T M ?? W e~'~ 

aM --~ a if M ~ oo Only  known~14'17): Also known:  
o- ~< O-M ~< ff ~ 2  ~ M - i / 2  (M ---, 0) 

6 ~ t ~ o  -2 ( m ~  00) 
~ >>. (1 + 1 /M)  I/2 a ~  

1 " ~ M ( A ) ~ A  W '~ ?? W ~ 
Known if M (  A ) >> A ll2 + 

M ( A ) = m A  ~" Ref. 8 ~"  (Ref. 8) 

M ( A  ) >> A 0 Trivial 0 

u Proved results without a reference are contained in Ref. 18. 

Denote IF',M = ~,~I~tl/2 ~'M--M," Then 

A ,/~,,SM~,,, _- (A/M) ~'~ (,,,/M F'f ds 
~0 

are additive functionals of stationary, reversible Markov processes with a 
common invariant measure, namely the standard Gaussian one. Consider 
now the Hilbert spaces 

�9 Y{~' = L2(~,  (M/2~)  1/2 e _M:,2/2) 

and introduce the unitary isomorphisms UM: ~ M  ~ ~r by 
(UM(b)(x) = ~(x/Ml/2) .  Then (~M acts in ~ M ,  while the generator of lT"y is 
MGM acting in idol, where GM = U~tGM(UM) - t .  The proof of Theorem 2 
relies upon a lemma ensuring the uniform (in M) ergodicity of the Markov 
processes ~'y in a rather strong sense. 

Gap Lemma.  [ f l ~ < M < o o ,  then 

S p e c ( M G M )  c~ M + 1 

This uniform ergodicity is combined with a martingale approximation, 
which is a useful tool to obtain central limit theorems for additive 
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functionals of Markov processes. (4'6'9) In fact, part (i) of Theorem 2 follows 
directly from Ref. 6 with the exact limiting variance 

5 2 =  -2(~b, (MGM) - t  45)a~, where ~ ( x ) = x  

Part (ii), however, requires additional arguments, since we have a double 
array of Markov processes in this case. 

7. C O U P L I N G  

Coupl ing  Lemma. For every M the processes V~ and ~'~ can be 
defined in the same probability space (Y~, pM) in such a way that: 

(i) The distribution of V~ (V~) coincides with that of the 
mechanical (Markovian) velocity process. 

(ii) I fM(A)>>A 1/2 + ~, then for a n y r / > 0 a n d  t > 0  

pM(A~ A-l/: ds IVy ~A~- PY(~I > ~ - , 0  

Modulo some slight deviations, our coupling is the same as the one 
used in Ref. 5; therefore, we do not go into details here. The main dif- 
ference is in proving (ii), i.e., that the coupling is good. 

The following inequalities are evident: 

({ }) p M ~  sup A 1/2 d s ( V s ~ ( ~ - f ' y  (A~) >rl 
O<~t'<~t 

~ pM(A~({ sup tA '/2 IVy! A I -  P~:~>l >~}) (7.1) 
O <~ t' <~ t 

To have a "good coupling," i.e., to have (5.2), it is necessary and sufficient 
to show that the smallest probability of this chain converges to zero. 
Unfortunately, with our present method, we are only able to handle the 
second expression. As one can find after understanding the dynamics of the 
proof, the Coupling Lemma is sharp in this context; that is, if M ( A ) =  
0(A1/2), then the assertion of the lemma does not hold. (But the coupling 
may still be "good"--and we expect that actually it is "good" for 
M(A)>> 1!) On the other hand, for M(A)>~A 3/5+~, we are able to prove 
that the largest probability above still converges to zero (this fact may be 
useful if one also wants to bound the decay of the velocity autocorrelation 
function). 
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The fundamental idea in the construction of a good coupling is that 
the processes V~ and ~'~ should suffer as many joint collisions with light 
particles as possible. Our main observations are: 

(a) These joint collisions have a contractive effect for the difference 
of the velocities, as is easily seen from the collision equations (similar ideas 
were heavily used in Ref. 1 ). 

(b) To obtain a good bound for the L1 deviation of the velocity 
processes, one does not need to add up the effects of all collisions, but it is 
sufficient to use certain integrals of exponentially decaying functions incor- 
porating the contractive effects of (a). 

8. P R O B L E M S  

8.1. O n e - D i m e n s i o n a l  Case 

The question marks in Table I represent the main areas of problems. 
We consider them in more detail. 

8.1.1.  C a s e  M ( A ) ~  1. Since the conjecture A-t/2Q~(A)~ W e, if 
A-- .ov and M(A)--*O, comes from a simple intuitive perturbative 
argument, it is reasonable to first look for a rigorous perturbative proof to 
show that 

lim A -1 Var QM(A) = 62 
A ~ o ~ , M ( A ) ~ O  

8.1.2.  C a s e  M ( A ) - M .  (a) It is an extremely intruguing 
question whether, in general, T M is a Wiener process or not. Computer 
results by Sinai's group (1~) suggest that, for general M, it is not. On the 
other hand, other computer results (12) also gave the c(M)o t -3 asymptotic 
decay of the velocity autocorrelation EVoMV, M that had been known for the 
Wiener case M -  1. (I~ 

(b) The solution of the previous problem seems hopeless at present, 
since, for example, no good coupling exists; therefore we expect further 
progress in more modest directions, e.g., our estimates for ffM may be of 
some use in bounding a M for large M and to show first that aM < ff if M is 
large. It is more difficult to show that the relations limM~ ~ a M = g ,  
limM~ ~ aM=l im~t~0  aM = 6  suggested by the numerical results hold. 

8.1.3.  C a s e  1 ~ M(A)  ~ A ~/z + ~ At present we have no device to 
catch the cancellations that occur in the smallest probability of (7.1) by 
symmetry reasons. Here a clever argument may help, and to expect further 
progress is realistic. 
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Table II 

A -1/2Q~.~)~ A 1/2QM.IA, 

d > l  

Expec ted  P roved  ~ P roved  ~ 

M(A)  ~ 1 ?? ?? Explodes  
M .,~t 

M(A)  =- M W~,R ?? W ~ 
aaMR ~> ffd, R ?? - -  

1 ~ M(A)  ~ A W -~'R ?? W -~'R 
Only  if M(A ) ~> A z/2 + 

" ~" (Ref. 5) M(A)  = rnA ~d,R Ref. 5 ~d,R 

M( A ) ~> A 0 Triv ia l  0 t r ivial  

P roved  results  w i thou t  a reference are con ta ined  in Ref. 18. 

8.2. Mult idimensional  Case 

Now an additional nontrivial parameter appears: the radius R = R(A) 
of the spherical Brownian particle. For simplicity, we suppose R ( A ) - R  
and then the possibilities are the same as those in the 1D situation. Before 
formulating the questions, we again compile the possibilities (Table II). 

A Markov approximation ~M was defined in Ref. 5 and the arguments 
(the Gap Lemma and its consequences) of Ref. 18 extend to this case, too. 
Moreover, for M(A)=mA, Dfirretal. (5) constructed a good coupling to 
show that the limiting process is a d-dimensional Ornstein-Uhlenbeck one. 
The method of our aforementioned paper also gives a complete analog of 
Theorem 1 with the limiting variance aZ.R = R l-ed(~z/8). 

8 .2.1.  C a s e  M ( A ) _ - - M .  We expect a limiting Wiener process of 
variance (a~R) 2 for any d>~ 2, though a proof seems realistic for d~> 5 only, 
since then the memory decays sufficiently strongly so as to give hope that 
an inductive argument works. (2'3) 

The conjectured inequality is an analog of the 1D one, but it is a 
further question whether a similar upper bound can be expected at all. 

8.2.2.  C a s e  1 ~ M(A) ~A.  Same as in the 1D situation. 

8.2.3. Asymptotic Independence of Two Brownian Par- 
ticles. Suppose that two extended spherical particles of equal masses M 
move in an ideal gas and collide elastically with each other and with the 
gas particles. Here the system cannot be considered in equilibrium, but we 
expect that for reasonable initial measures (e.g., the Brownian particles 
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start from Qff(0) and M 0 " Q2 ( ) ,  IQM(0)--QM(0)] >2R with Maxwellian 
velocities and the measure of the light particles is Gibbsian outside the 
domains occupied by the spheres) and for M(A)>> 1 the rescaled trajec- 
tories A-I/2[Qff~)(At)- QM~A)(0)], j =  1, 2, behave asymptotically in the 
same way as independent copies of processes prescribed by Table II. 
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